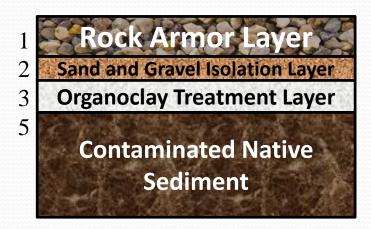
Portland Harbor Superfund Site In-Situ Capping

Presentation to the
Portland Harbor Community Advisory Group
March 11, 2015
EPA Region 10

Presentation Objectives

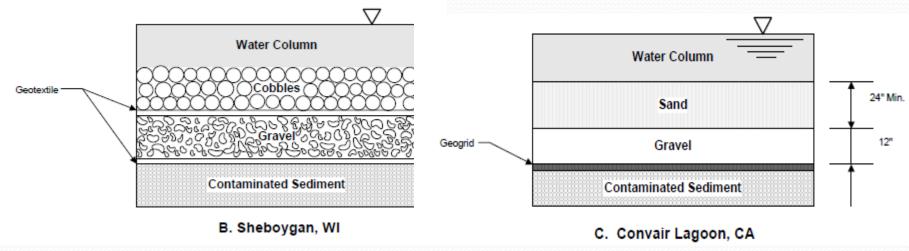
- Introduce one of several technologies to be evaluated in site's feasibility study
- Provide overview of in-situ capping:
 - Key considerations, advantages and limitations
 - Maintenance and monitoring
 - Success Stories


What Is In-Situ Capping?

- Placement of covering or cap of clean material over contaminated river bottom sediment that remains in place (in situ):
 - Typically constructed of clean sediment, sand or gravel
 - May include multiple layers of various capping materials

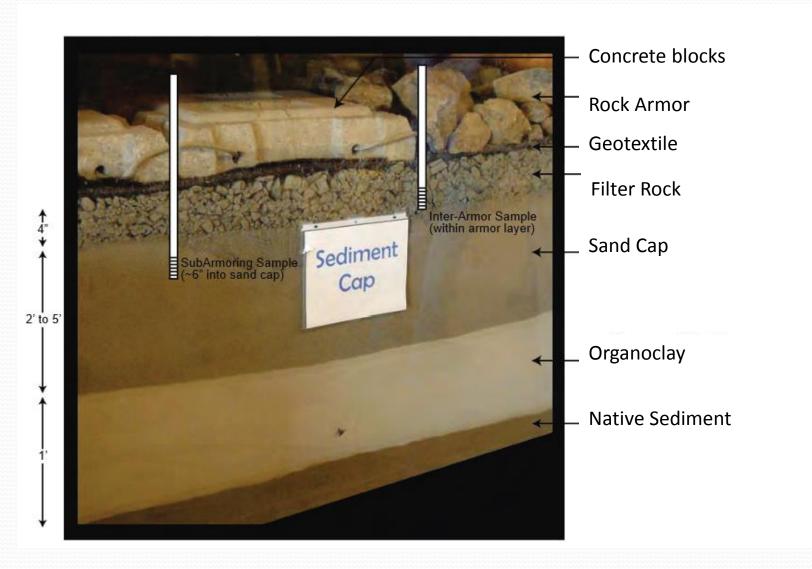
Capping Reduces Risk of Exposure

- A cap over contaminated sediment:
 - Creates physical barrier
 - Reduces exposure due to direct contact
 - Reduces ability of burrowing organisms to move contaminants to surface of river bottom
 - Stabilizes contaminated sediment
 - Provides erosion protection of sediment and cap
 - Reduces re-suspension of contaminants into the water
 - Reduces transport of dissolved contaminants into the water


Examples of Caps

- 1. Rock layer to protect cap from erosion
- 2. Sand/gravel to isolate contaminated sediment
- 3. Treatment layer to contain or remove a specific contaminant
 - For example oil absorption layer
- 4. Native soft sediment stabilized
 - For example solidified with cement-like material
- 5. Contaminated sediment (untreated) under cap

Use of Geotextiles and Geogrids



Source: Contaminated Sediment Remediation Guidance for Hazardous Waste Sites. 2005.

Geotextile: synthetic fabric to separate contaminated soil or sediment from the cap or to separate or protect different cap layers

Geogrid: rigid synthetic material used to reinforce sediment

Cap Example

Capping Selection Considerations

- 1. Is suitable cap material readily available?
- 2. How will a cap affect use of capped area?
 - Infrastructure
 - Water depth
 - Human activities and potential use restrictions
- 3. Are site conditions favorable to capping?
 - Floods and ice scour
 - Ground water flow rate
 - Sediment strength
 - Movement of contaminants
 - Coverage area

Advantages and Limitations

Advantages

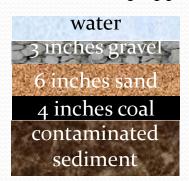
- Can quickly reduce exposure to contaminants
- Less infrastructure than dredging
- May be less disruptive to community
- May be less expensive
- May create improved river bottom surface habitat for native organisms

Limitations

- Contaminated sediment remains in place
- Cap must be maintained
- Long-term institutional controls may be required
- May alter habitat for native organisms
 - Materials that discourage burrowing organisms may be needed

Maintenance and Monitoring

- Caps must be maintained and monitored
- Inspections may check that:
 - Cap thickness remains protective
 - Contaminants remain effectively isolated
 - Cap continues to support expected habitat


Capping Performance Monitoring

Wyckoff Superfund Site Diver Cap Sampling

Video: Performance Assessment of the Wyckoff
Superfund Site Cleanup Cap (1:24 Minutes, 54.2MB,
Windows Media Format)

Capping Success Story – PCBs

- Spokane River Upriver Dam PCBs
 Sediment site (Spokane, Washington)
 - 3.5 acres
 - Sediment concentrations as high as 1,430 parts per billion
 - Washington State Department of Ecology issued a <u>no</u> fish consumption advisory
 - 2006 amended cap applied

 2008 – total PCBs below detection in sand and coal layers; cap is working

Cap Placement

Source: Washington State Department of Ecology https://fortress.wa.gov/ecy/gsp/Sitepage.aspx?csid=4213

Capping Success Story - PCBs

 Manistique River Area of Concern, next to Lake Michigan (Schoolcraft County, Michigan)

- 15 acres (1.7-square-mile area of the Manistique River and Harbor)
- 1996 to 2000 EPA dredging
- Capped with 40-mil (0.1-inch) plastic anchored by 38 two-ton concrete blocks around cap perimeter
 - Concrete blocks prevent erosion of contaminated sediments
- 2001 inspection confirmed cap was physically intact and most anchors in place.
- 2001 10-ppm PCB concentration goal met
- 2004 –1 ppm PCBs remaining in river and harbor sediments

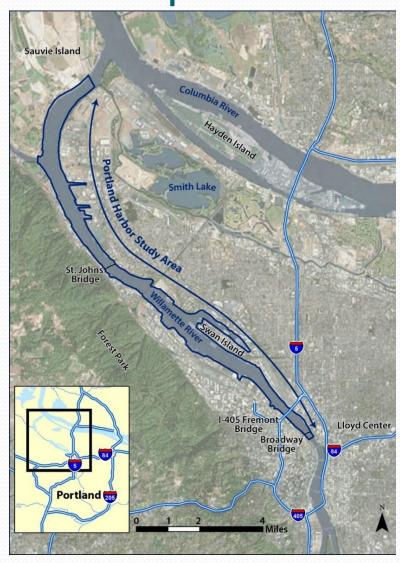
Source: EPA. http://www.epa.gov/glnpo/glindicators/sediments/remediateb.html

Capping Success Story – PAHs

- McCormick & Baxter site (Willamette River, Portland, Oregon)
- 23-acre area
 - Sediment contaminated with PAHs, creosote, diesel, pentachlorophenol and heavy metals
 - Risk from direct contact with sediments
 - 2005 amended cap applied
 - 2010 –PAHs in cap below National Recommended Water Quality Criteria, with exception of chrysene in one sample

Typical Sediment Cap Section

Source: Third Five-Year Report
http://www.epa.gov/region10/pdf/sites/mccormick
baxter/m&b five year review sept 2011.pdf


EPA Contacts

Sean Sheldrake – (206) 553-1220 Kristine Koch – (206) 553-6705 Alanna Conley – (503) 326-6831

Additional Information:

http://www.epa.gov/region10/portlandharbor

Portland Harbor Superfund Site

